Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454518

RESUMO

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Assuntos
Ventrículos Cerebrais , Imageamento por Ressonância Magnética , Humanos , Ventrículos Cerebrais/fisiologia , Aqueduto do Mesencéfalo/diagnóstico por imagem , Aqueduto do Mesencéfalo/fisiologia , Respiração , Pressão , Líquido Cefalorraquidiano/diagnóstico por imagem , Líquido Cefalorraquidiano/fisiologia
2.
J Clin Med ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762895

RESUMO

BACKGROUND: The pathophysiology of this association of type 1 Chiari malformation (CM1) and syrinxes is still unknown. There is an alteration in the dynamics of neurofluids (cerebrospinal fluid, arterial and venous blood) during the cardiac cycle in CM1. Our objective is to quantify CSF or arterial blood or venous blood flow in patients with Chiari syndrome (CS) with and without syrinxes using phase-contrast MRI (PCMRI). METHODS: We included 28 patients with CM1 (9 with syrinxes, 19 without). Morphological MRI with complementary PCMRI sequences was performed. We analyzed intraventricular CSF, subarachnoid spaces CSF, blood, and tonsillar pulsatility. RESULTS: There is a highly significant correlation (p < 0.001) between cerebral blood flow, cerebral vascular expansion volume and venous drainage distribution. Venous drainage distribution is significantly inversely correlated with oscillatory CSF volume at the level of the foramen magnum plane [-0.37 (0.04)] and not significantly correlated at the C2C3 level [-0.37 (0.05)] over our entire population. This correlation maintained the same trend in patients with syrinxes [-0.80 (<0.01)] and disappeared in patients without a syrinx [-0.05 (0.81)]. CONCLUSION: The distribution of venous drainage is an important factor in intracranial homeostasis. Impaired venous drainage would lead to greater involvement of the CSF in compensating for arterial blood influx, thus contributing to syrinx genesis.

3.
Biomedicines ; 12(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275381

RESUMO

BACKGROUND: CSF dynamics are disturbed in chronic hydrocephalus (NPH). We hypothesise that these alterations reflect a disturbance of intracranial compliance. The aim of our study is to investigate the variations in intracranial hydrodynamics in NPH after ventricular shunt surgery. PATIENTS AND METHOD: We included 14 patients with definite NPH. All patients improved after ventriculoperitoneal shunting. The patients underwent an analysis of intracranial haemodynamics by phase-contrast MRI (pcMRI) preoperatively, at 6 months postoperatively, and at 1 year postoperatively. We analysed the dynamics of intraventricular CSF at the level of the aqueduct of Sylvius (SVAQU) and CSF at the level of the high cervical subarachnoid spaces (SVCERV). We calculated the ratio between SVAQU and SVCERV, called CSFRATIO, which reflects the participation of intraventricular pulsatility in overall intracranial CSF pulsatility. RESULTS: SVAQU significantly (p = 0.003) decreased from 240 ± 114 µL/cc to 214 ± 157 µL/cc 6 months after shunt placement. Six months after shunt placement, SVCERV significantly (p = 0.007) decreased from 627 ± 229 µL/cc to 557 ± 234 µL/cc. Twelve months after shunt placement, SVCERV continued to significantly (p = 0.001) decrease to 496 ± 234 µL/cc. CSFRATIO was not changed by surgery. CONCLUSIONS: CSF dynamics are altered by shunt placement and might be a useful marker of the shunt's effectiveness-especially if pressure values start to rise again. The detection of changes in CSF dynamics would require a reference postoperative pcMRI measurement for each patient.

4.
J Clin Med ; 11(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142990

RESUMO

BACKGROUND: We propose that the appearance of a ptosis of the cerebellar tonsils and syringomyelia is linked to its own hemohydrodynamic mechanisms. We aimed to quantify cerebrospinal fluid (CSF) and cerebral blood flow to highlight how neurofluid is affected by Chiari malformations type 1(CMI) and its surgery. METHODS: We retrospectively included 21 adult patients with CMI who underwent pre- and postoperative phase contrast MRI (PCMRI) during the period from 2001 to 2017. We analyzed intraventricular CSF, subarachnoid spaces CSF, blood, and tonsils pulsatilities. RESULTS: In preoperative period, jugular venous drainage seems to be less preponderant in patients with syringomyelia than other patients (venous correction factor: 1.49 ± 0.4 vs. 1.19 ± 0.1, p = 0.05). After surgery, tonsils pulsatility decreased significantly (323 ± 175 µL/cardiac cycle (CC) vs. 194 ± 130 µL/CC, p = 0.008) and subarachnoid CSF pulsatility at the foramen magnum increased significantly (201 ± 124 µL/CC vs. 363 ± 231 µL/CC, p = 0.02). After surgery, we found a decrease in venous flow amplitude (5578 ± 2469 mm3/s vs. 4576 ± 2084 mm3/s, p = 0.008) and venous correction factor (1.98 ± 0.3 vs. 1.20 ± 0.3 mm3/s, p = 0.004). CONCLUSIONS: Phase-contrast MRI could be a useful additional tool for postoperative evaluation and follow-up, and is complementary to morphological imaging.

5.
Acta Neurochir Suppl ; 131: 303-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839862

RESUMO

INTRODUCTION: In patients with noncommunicating hydrocephalus, dilation of the ventricles stresses white matter fibers and alters the cerebral blood flow (CBF) and cerebrospinal fluid (CSF) dynamics. The purpose of this work was to investigate, non-invasively, how endoscopic third ventriculostomy (ETV) impacts white matter, CSF oscillations, and CBF. METHODS: Eleven patients presenting with chronic headaches and noncommunicating hydrocephalus due to aqueductal stenosis were treated by ETV. Phase Contrast-MRI (PCMRI) and Diffusion Tensor Imaging (DTI) were performed before and after surgery to evaluate CSF and CBF as well as white matter stresses in the Corpus Callosum (CC) and Corona Radiata (CR). ETV success was confirmed by quantification of the CSF oscillations through the aperture in the third ventricle. RESULTS: All patients improved after surgery. CSF stroke volume was five times greater than normal ventricular stroke volume. Decrease in cervical CSF oscillations and increase in CBF were observed after ETV. In CR, fiber anisotropy decreased, while water diffusion increased. In CC, anisotropy did not vary, while water diffusion also increased. CONCLUSION: Even if static ICP typically do not increase, CSF and blood flow are impacted. PCMRI and DTI can provide useful information to help neurosurgeons select patients with good chance to improve after ETV.


Assuntos
Hidrocefalia , Terceiro Ventrículo , Imagem de Tensor de Difusão , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Imageamento por Ressonância Magnética , Terceiro Ventrículo/diagnóstico por imagem , Terceiro Ventrículo/cirurgia , Resultado do Tratamento , Ventriculostomia
6.
Radiology ; 297(2): E242-E251, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32544034

RESUMO

Background Brain MRI parenchymal signal abnormalities have been associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Purpose To describe the neuroimaging findings (excluding ischemic infarcts) in patients with severe coronavirus disease 2019 (COVID-19) infection. Materials and Methods This was a retrospective study of patients evaluated from March 23, 2020, to April 27, 2020, at 16 hospitals. Inclusion criteria were (a) positive nasopharyngeal or lower respiratory tract reverse transcriptase polymerase chain reaction assays, (b) severe COVID-19 infection defined as a requirement for hospitalization and oxygen therapy, (c) neurologic manifestations, and (d) abnormal brain MRI findings. Exclusion criteria were patients with missing or noncontributory data regarding brain MRI or brain MRI showing ischemic infarcts, cerebral venous thrombosis, or chronic lesions unrelated to the current event. Categorical data were compared using the Fisher exact test. Quantitative data were compared using the Student t test or Wilcoxon test. P < .05 represented a significant difference. Results Thirty men (81%) and seven women (19%) met the inclusion criteria, with a mean age of 61 years ± 12 (standard deviation) (age range, 8-78 years). The most common neurologic manifestations were alteration of consciousness (27 of 37, 73%), abnormal wakefulness when sedation was stopped (15 of 37, 41%), confusion (12 of 37, 32%), and agitation (seven of 37, 19%). The most frequent MRI findings were signal abnormalities located in the medial temporal lobe in 16 of 37 patients (43%; 95% confidence interval [CI]: 27%, 59%), nonconfluent multifocal white matter hyperintense lesions seen with fluid-attenuated inversion recovery and diffusion-weighted sequences with variable enhancement, with associated hemorrhagic lesions in 11 of 37 patients (30%; 95% CI: 15%, 45%), and extensive and isolated white matter microhemorrhages in nine of 37 patients (24%; 95% CI: 10%, 38%). A majority of patients (20 of 37, 54%) had intracerebral hemorrhagic lesions with a more severe clinical presentation and a higher admission rate in intensive care units (20 of 20 patients [100%] vs 12 of 17 patients without hemorrhage [71%], P = .01) and development of the acute respiratory distress syndrome (20 of 20 patients [100%] vs 11 of 17 patients [65%], P = .005). Only one patient had SARS-CoV-2 RNA in the cerebrospinal fluid. Conclusion Patients with severe coronavirus disease 2019 and without ischemic infarcts had a wide range of neurologic manifestations that were associated with abnormal brain MRI scans. Eight distinctive neuroradiologic patterns were described. © RSNA, 2020.


Assuntos
Betacoronavirus , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/patologia , Imageamento por Ressonância Magnética/métodos , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/patologia , Adolescente , Adulto , Idoso , COVID-19 , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
7.
Diagnostics (Basel) ; 10(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526946

RESUMO

This prospective study investigated the effects of fold-over oversampling on phase-offset background errors with 2D-Cine phase contrast (Cine-PC) magnetic resonance imaging (MRI). It was performed on brain MRI and compared to conventional Full-field of view FOV coverage and it was tested with two different velocity encoding (Venc) values. We chose Venc = 100 mm/s to encode cerebrospinal fluid (CSF) flows in the aqueduct and 600 mm/s to encode blood flow in the carotid artery. Cine-PC was carried out on 10 healthy adult volunteers followed simultaneously by an acquisition on static agar-gel phantom to measure the phase-offset background errors. Pixel-wise correction of both the CSF and the blood flows was calculated through 32 points of the cardiac-cycle. We compared the velocity-to-noise ratio, the section area, the absolute and the corrected velocity (peak; mean and minimum), the net flow, and the stroke volume before and after correction. We performed the statistical T-test to compare Full-FOV and fold-over and Bland-Altman plots to analyze their differences. Our results showed that following phase-offset error correction, the blood stroke-volume was significantly higher with Full-FOV compared to fold-over. We observed a significantly higher CSF mean velocity and net flow values in the fold-over option. Compared to Full-FOV, fold-over provides a significantly larger section area and significantly lower peak velocity-offset in the aqueduct. No significant difference between the two coverages was reported before and after phase-offset in blood flow measurements. In conclusion, fold-over oversampling can be chosen as an alternative to increase spatial resolution and accurate cerebral flow quantification in Cine-PC.

8.
Fluids Barriers CNS ; 17(1): 1, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31931818

RESUMO

BACKGROUND: Both aging and changes in blood flow velocity between the extracranial (intraspinal) and intracranial regions of cerebral vessels have an impact on brain hydro-hemodynamics. Arterial and venous cerebral blood flows interact with cerebrospinal fluid (CSF) in the both the cranial and spinal systems. Studies suggest that increased blood and CSF flow pulsatility plays an important role in certain neurological diseases. Here, we investigated the changes in blood-CSF flow pulsatility in the cranial and spinal systems with age as well as the impact of the intracranial compartment on flow patterns. METHOD: Phase-contrast magnetic resonance imaging (PC-MRI) was performed in 16 young and 19 elderly healthy volunteers to measure the flows of CSF and blood. CSF stroke volume (SV), blood SV, and arterial and venous pulsatility indexes (PIs) were assessed at intra- and extracranial levels in both samples. Correlations between ventricular and spinal CSF flow, and between blood and CSF flow during aging were also assessed. RESULTS: There was a significant decrease in arterial cerebral blood flow and intracranial venous cerebral blood flow with aging. We also found a significant increase of intracranial blood SV, spinal CSF SV and arterial/venous pulsatility indexes with aging. In regard to intracranial compartment impact, arterial and venous PIs decreased significantly at intracranial level in elderly volunteers, while young adults exhibited decrease in venous PI only. Intracranial venous PI was paradoxically lower than extracranial venous PI, regardless of age. In both sample groups, spinal CSF SV and aqueductal CSF SV were positively correlated, and so were extracranial blood and spinal CSF SVs. CONCLUSION: The study demonstrates that aging changes blood flow but preserves blood and CSF interactions. We also showed that many parameters related to blood and CSF flows differ between young and elderly adults.


Assuntos
Encéfalo/irrigação sanguínea , Líquido Cefalorraquidiano/fisiologia , Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia , Idoso , Idoso de 80 Anos ou mais , Ventrículos Cerebrais/fisiologia , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...